Machine Learning & Anomaly Detection

Michelle Lochner

SARAO Data Science Team:

Bruce Bassett Alireza Vafaei Sadr Ethan Roberts

Kavli Summer Program Students:

Sara Webb Daniel Muthukrishna

UCL/ Oskar Klein Centre:

Hiranya Peiris Catarina Alves Rahul Biswas

Supervised Machine Learning

Automatically learns a model to map inputs to outputs, using a training set.

https://towardsdatascience.com

Transient Classification

Lochner et al. (2016) - 1603.00882

Transient Classification

Feature Extraction

Lochner et al. (2016) - 1603.00882

Machine Learning

 $\tanh\left[w_{5} \tanh(w_{1}i_{1} + w_{2}i_{2}) + w_{6} \tanh(w_{3}i_{1} + w_{4}i_{2}))\right]$

Transient Classification

Multiwavelength Transient Classification

(a) Confusion matrix without optical feature

(b) Confusion matrix showing the difference when optical feature is added

Online Learning with Brokers

E.g: ANTARES (Saha et al. - 1409.0056,

Narayan et al. - 1801.07323)

Science with Imperfect Classification

Bayesian Estimation Applied to Multiple Species (BEAMS) Kunz, Bassett & Hlozek - 0611004 Newling et al. - 1110.6178 Hlozek et al. - 1111.5328 Lochner et al. - 1205.3493 Roberts et al. - 1704.07830

Anomaly Detection

Known Unknowns - rare events

Caltech/MIT/LIGO Lab

Unknown Unknowns - new anomalies

Daily Herald Archive / SSPL / Getty Images

How do we discover new phenomena...

...among 10 million possibilities?

Unsupervised Learning

The farther away from normal the higher the anomaly score

Anomaly Detection Algorithms

representative points

Anomaly Detection Isn't Enough

Human-in-the-loop Learning

www.clickworker.com

ANOMALY SCORING CLUSTERING

Object ID: 6812

Anomaly Score: 4.766405

Lochner and Bassett (in prep)

ANOMALY SCORING CI

CLUSTERING

Object ID: 653

Anomaly Score: 0.884448

Lochner and Bassett (in prep)

Lochner and Bassett (in prep)

Lochner and Bassett (in prep)

Anomaly Score: 1.303772

Astronomaly Applied to DWF

Webb et al. (in prep)

Real-time anomaly detection

Muthukrishna et al. (in prep)

Real-time anomaly detection

Muthukrishna et al. (in prep)

Real-time anomaly detection

Muthukrishna et al. (in prep)

Talking Points

- No ML is perfect how do we as a community move towards dealing with probabilistic catalogues for things like SN cosmology?
- Non-representivity remains a huge problem for ML algorithms how do we build better training sets?
- How do we avoid a high false positive rate of anomaly detection in the low SNR regime?
- When 10 000 anomalous objects are detected each night, how do we coordinate the community?
- How do we use ML to automatically follow-up targets intelligently?