Current & Future Ground-Based GW Detectors

Laura Cadonati, Georgia Tech Jo van den Brand, Nikhef

IGWN = International Gravitational Wave observatory Network

LIGO Livingston

GEO600

Observing Scenarios

the second s

The Present: LIGO, Virgo, GEO O3 run: April 1, 2019 - April 30, 2020

https://www.gw-openscience.org/detector_status/day/20200203/ Transients 2020, Cape Town, February 5, 2020

The Present: LIGO, Virgo Performance in the first 6 months (O3a)

This plot uses all available data, regardless of observatory operational state

Transients 2020, Cape Town, February 5, 2020

Network duty factor
[1238166018-1253977218]

- Triple interferometer [44.5%]
- Double interferometer [37.4%]
- Single interferometer [15.0%]
- No interferometer [3.2%]

April 2019					May 2019							June 2						
S	Μ	Т	W	Т	F	S	S	Μ	Т	W	Т	F	S	S	Μ	Т	W	
	1	2	3	4	5	6				1	2		4					
7		9	10	11		13	5	6	7	8	9		11		3	4	5	
14	15	16	17	18	19	20			14	15	16	0	18	9	10	11	12	
	22	23	24			27		20		22	23	24	25	16	17	18	19	
28	29	30					26	27	28	29	30	31		23	24	25	26	

February 2020					March 2020							April 2					
S	Μ	Т	W	Т	F	S	S	Μ	Т	W	Т	F	S	S	Μ	Т	W
						1	1	2	3	4	5	6	7				1
2	3	4	5	6	7	8	8	9	10	11	12	13	14	5	6	7	8
9	10	11	12	13	14	15	15	16	17	18	19	20	21	12	13	14	15
16	17	18	19	20	21	22	22	23	24	25	26	27	28	19	20	21	22
23	24	25	26	27	28	29	29	30	31					26	27	28	29

https://gracedb.ligo.org/superevents/public/O3/

https://gracedb.ligo.org/superevents/public/O3/

Some examples

GRAVITATIONAL-WAVE TRANSIENT CATALOG-1

LIGO-VIRGO DATA: HTTPS://DOI.ORG/10.7935/82H3-HH23

WAVELET (UNMODELED)

LIGO ((())VIRGD

GW 90425: <u>arxiv:2001.01761</u> Observation of a compact binary coalescence with total mass $\sim 3.4 M_{\odot}$

GW190425:

1. the first demonstration of single-detector detection 2. likely the second BNS detection with gravitational waves 3. an outlier of observed galactic BNS population

Transients 2020, Cape Town, February 5, 2020

Initial Alert (solid line)

43 minute latency BNS w/ >99% probability 90% region: **10,200** deg² Distance: **110 – 200 Mpc**

Final (dotted line) 90% region: **8,284 deg**² Distance: **88 – 228 Mpc**

Using L1 and V1

LIGO Hanford LIGO Livingston

Planned

Gravitational Wave Observatories

GEO600

VIRGO

Transients 2020, Cape Town, February 5, 2020

LIGO India The near future: 2020's

KAGRA

Observing Scenarios

O4: 2G @ Design Sensitivity (~2022)

after additional commissioning Reach: $\sim 2 \times O2$ ~100 BBH/year (z≲2) ~I-2 NS-BH/year ~20-30 BNS/year (z≲0.1)

14

Prospects for Localization

Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo and KAGRA – arxiv.org:1304.0670

O5: A+ (circa 2025)

Transients 2020, Cape Town, February 5, 2020

Modest upgrades to aLIGO and AdVirgo
Frequency-dependent squeezing
lower optical coating thermal noise

Reach: ~ 3x O2 ~500-1000 BBH/year ~10 NS-BH/year ~200-300 BNS/year

O5: AdV+ (circa 2025)

Transients 2020, Cape Town, February 5, 2020

• Tuned signal recycling and HPL: 120 Mpc

- Frequency dependent squeezing: I 50 Mpc
- Newtonian noise cancellation: 160 Mpc

Larger mirrors (105 kg): 200-230 Mpc Improved coatings: 260-300 Mpc

The Future: 2030's

Long-term Future for current facilities: Voyager

A concept under study for incremental performance improvement in the late 2020s

aLIGO with: Si optics, > 100 kg; Si or AlGaAs coatings; 'mildly' Cryogenic; λ~2 μm, 300 W

N. Smith and R. Adhkiari, Cold voyage, tech. rep. G1500312 (LIGO, 2015)

BNS reach: ~10x O2 BBH reach: z~5 ~10^4 binary coalescences per year

19

The 3rd Generation ~10^5 binary coalescences per year (circa 2035)

Einstein Telescope

- European conceptual design study
- Multiple instruments in xylophone configuration
- underground to reduce newtonian background
- 10 km arm length, in triangle.
- Assumes 10-15 year technology development
- Site selection ~2023

The 3rd Generation ~10^5 binary coalescences per year (circa 2035)

Cosmic Explorer

- NSF-funded US conceptual design study starting now
- 40km surface Observatory baseline
- Signal grows with length not most noise sources
- Thermal noise, radiation pressure, seismic, Newtonian unchanged; coating thermal noise improves faster than linearly with length
- Stage I (~2035) Extension of A+ technologies
- Stage 2 (~2045) Cryogenics, new material for test masses and coatings

The Future for MMA

Transients 2020, Cape Town, February 5, 2020

 10^{3}

ET

10% detected-50% detected-

Table 1: Expected detections per year (N), number detected with a resolution of < 1, < 10 and < 100sq. deg. $(N_1, N_{10} \text{ and } N_{100}, \text{ respectively})$ and median localization error (M in sq. deg.), in a network consisting of LIGO-Hanford, LIGO-Livingston and Virgo (HLV), HLV plus KAGRA and LIGO-India (HLVKI) and 1 Einstein Telescope and 2 Cosmic Explorer detectors (1ET+2CE).

Network	Ν	N_1	N_{10}	N ₁₀₀	М
HLV	48	0	16	48	19
HLVKI	48	0	48	48	7
1ET+2CE	990k	14k	410k	970k	12

arXiv:1903.09277

